

Computational Design of Shape-Aware Sieves

David Cha and Oded Stein

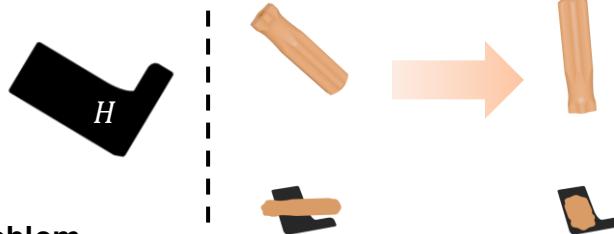
Problem

Our tool generates sieves to sort sets of objects of arbitrary shapes and sizes.

Definitions

For a 3D object M , denote $\text{proj}(M)$ to be its 2D orthographic projection onto the xy -plane.

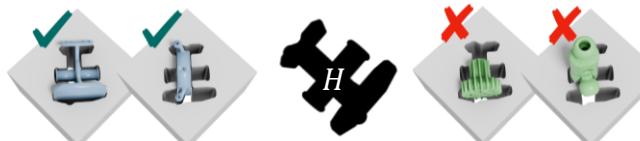
Given a 2D hole H on the xy -plane, if there exists a rigid transformation mapping M to M' such that $\text{proj}(M') \subseteq H$, then say H *admits* M . Else, H *blocks* M .



Problem

Input: Set of 3D shapes \mathcal{A} to admit and set of 3D shapes \mathcal{B} to block.

Output: A 2D sieve hole H that achieves this.



Method

Admit/Block Optimization

The area of $\text{proj}(M')$ outside of a hole H is

$$f_H(M') = \text{area}(\text{proj}(M')) - \text{area}(\text{proj}(M') \cap H)$$

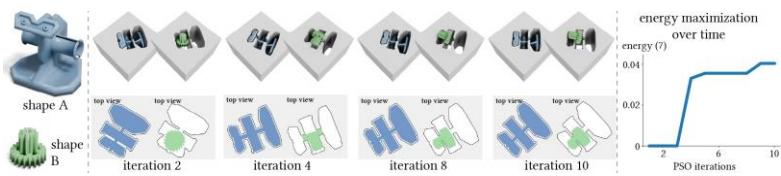
Note that $\min_{M'} f_H(M')$ is zero if and only if H admits M and is positive if and only if H blocks M .

Sieve Hole Design

For simplicity, let $H = \text{proj}(A')$ so that shape A is always admitted. To ensure the hole blocks shape B , we solve

$$\max_{A'} \min_{B'} f_{\text{proj}(A')}(B')$$

- *Inner min opt:* Differentiable rendering
- *Outer max opt:* Particle swarm optimization



Fabrication Considerations

- Floating pieces: Solved by filling all holes in $\text{proj}(A')$
- Friction: Solved by optimizing with shape A dilated

Results

